As we've seen in previous posts, conventional hulls resist bow down trimming forces by immersing more volume forward.
This shifts the centre of buoyancy forward.
If the centre of gravity remains stationary or moves aft, the resulting separation gives a bow up righting moment.
Tornado style ‘conventional’ raked bow profiles indicate flared hull sections.
Meaning the sections get wider moving up, resulting in more volume at the top of the bow.
Such additional volume in the upper part of the hull is what we mean by ‘reserve buoyancy’.
This shifts the centre of buoyancy forward.
If the centre of gravity remains stationary or moves aft, the resulting separation gives a bow up righting moment.
Tornado style ‘conventional’ raked bow profiles indicate flared hull sections.
Meaning the sections get wider moving up, resulting in more volume at the top of the bow.
Such additional volume in the upper part of the hull is what we mean by ‘reserve buoyancy’.
![]() |
Compare the two IOR maxi bows in the foreground with the modern VO70 bows in the background. The hollow profile of the red bow (Steinlager II) reflects progressively widening flare in the topsides. In some cases the bow rake is made less extreme by ‘cheating’ the natural intersections of the two hull halves with a variable radius between the two surfaces. Image source |
Downwind
Conventional bows seek to marry a fine waterline entry with extra volume that
only becomes immersed when needed.
Inherent in this mechanism is a need for
significant bow down trim in order for the reserve buoyancy to take effect.
On
a conventional multihull this is not a problem: As the bow is pressed down, the
boat will keep sailing horizontally along the surface as the bow immerses. The
additional volume going into the water at the front will shift the CB forward
and a new equilibrium will be reached. A few degrees of bow down trim has no
adverse effect.
![]() |
Boat trims bow-down and reserve buoyancy gets to work. Image source |
The
limiting factors in this case are bow freeboard and additional hull drag due to
the progressively blunter entry of the trimmed immersed shape.
Freeboard limits
the absolute amount of reserve buoyancy available. Hence the use of 'ski jumps'.
Additional drag limits
acceleration which in turn affects apparent wind (accelerating downwind reduces
pressure in the rig, relieving bow down trimming moment).
Multihull
evolution has seen reserve buoyancy move down, progressively closer to the normal water level.
Meaning sections have developed from being ‘V’ shaped to more ‘U’ shaped. It is
no coincidence that this trend occurred at the same time as the advent of
angled/curved foils.
Imagine a
conventional Tornado style hull with angled or curved foils.
When reaching at speed the foils would be providing significant vertical force helping to keep the bow up and reducing effective displacement.
When reaching at speed the foils would be providing significant vertical force helping to keep the bow up and reducing effective displacement.
Now imagine this
hypothetical boat encountering a gust: The rig would power up and press the bow
down. Since the reserve buoyancy is some distance above the water, bow down
trim would initially increase to bring the reserve buoyancy into play.
But at
the same time the bow down trim would reduce the angle of attack of the foils,
possibly even bringing it below neutral.
The boat would not tend to follow the
water surface. Instead it would want to follow the chord line of the foils. This
would create a feedback loop where bow down trim would increase bow down
trimming force…
Having
reserve buoyancy low down in the bow sections makes it immediately available.
This is desirable when pitch attitude is critical such as on foil assisted
boats.
When things
get out of shape, the wide flat deck of a conventional hull abruptly increases
drag at the very point where reserve buoyancy runs out.
A carefully shaped ‘upside
down’ bow brings the water flow back together cleanly above it, giving the boat
a better chance of accelerating and shedding water to allow the bow to pop back
up.
![]() |
Image source |
But this is not the exclusive preserve of radical inverted bows.
More moderate shapes such as the Boyer MkIV A Cat still benefit from this effect.
This brings us back to the premise that 'wavepiercing bow' is too generic a term to be indicative of behaviour or performance.
The vertical location of the maximum section width is the feature that tells you the most about the design priorities of a particular boat.
More moderate shapes such as the Boyer MkIV A Cat still benefit from this effect.
This brings us back to the premise that 'wavepiercing bow' is too generic a term to be indicative of behaviour or performance.
The vertical location of the maximum section width is the feature that tells you the most about the design priorities of a particular boat.
The bow profile is
an indication of this vertical volume distribution.
In the final Part 3
we will look at the more subtle considerations of straight line sailing and
wave induced pitching.
No comments:
Post a Comment